Shenzhen Hopetime Industry Co.,Limited
HopetimePCB & GWT

Inspection techniques for ball grid array

Inspection techniques for ball grid array

Avoiding defects is the goal, but BGA inspection is always necessary to analyze the connections between a BGA and PCB. Because it is almost impossible to see the solder joints through direct visual observation, this analysis is accomplished using various inspection techniques and tools. These tools and techniques have evolved over the years to be dependable and user-friendly. While these tools cannot be used individually to cover all aspects of inspection, they can provide a comprehensive view of the BGA when combined.

Inspection tools and techniques are often organized into the following categories:

1.X-Ray Inspection

The most advanced inspection method for BGAs is X-ray inspection. X-rays work by emitting X-ray energy from an X-ray tube onto the board. X-rays pass through the board at differing amounts, with more X-rays trapped in dense areas such as solder joints. The X-rays are then collected at a detector, which translates them into visible light and generates an image.

In this image, solder joints are darker than their surroundings, allowing the viewer to see solder patterns. The resulting image will show a uniform grid of identical dark circles in an ideal board, the circles being the solder joints.

The X-ray test results in an image where the ball grid and solder patterns are easily seen and inspected from a top-down angle. More advanced X-ray inspection technology features a tilt function, which can analyze the shape of solder joints from different angles. These images are particularly useful for seeing variations in solder patterns and shapes, making this a good technology for identifying solder bridges, popcorning, excess solder and similar defects. This technology, however, is not good at detecting opens.

Like endoscopes, X-ray inspection technology can be used in various applications outside of BGA inspection. Some examples include via and through-hole inspection, surface-mount defect analysis and unleaded solder inspection.

2.Electrical Testing

Electrical testing of BGAs is another inspection process that tests the board’s electrical properties. This is different from mechanical testing, which is a destructive process that subjects the BGA to shock and shear tests to evaluate the quality of solder joints under stress.

Electrical testing runs a current through a BGA to analyze the electrical stability of the board. The test determines whether the current is on or off after the BGA component is connected. This type of test is useful for identifying if there are any electrical problems such as shorts or opens. However, as previously discussed, electrical tests can only identify the presence of these defects — they cannot be used to locate where a defect is on a BGA.

While electrical testing is an important step in the inspection process, it is difficult to pick up test points under BGA components. It is also difficult to meet assessment requirements with electrical tests alone. Instead, electrical tests are often used in combination with other test techniques to identify issues in a ball grid array inspection.

3.Optical or Visual Inspection

Optical inspection, also referred to as visual inspection, is the use of optics technology to view a BGA and its connections. This technique historically used the naked eye or microscopes, which delivered limited results. However, introducing the endoscope has proven particularly valuable for this inspection technique.

The endoscope was originally designed for medical applications, but the technology’s ability to visually inspect tiny objects in confined areas makes it ideal for BGAs. The technology involves using a camera with a high magnification lens and a connected monitor to gain close-up images of an inspection area. This technology is often paired with visualization software for advanced image capture and measurement.

Visual inspection with an endoscope allows technicians to look at the outer row of connections between a BGA and PCB — with good lighting, technicians can also view some interior rows. This optical technique helps identify and assess the overall quality of a solder joint, including the joint’s shape, surface texture and appearance, which can all indicate different defects.

Optical inspection can also identify shorts, opens, debris and cold solder and is essential for assessing rework, as it can identify proper reflow coverage. However, the visual capability of this inspection technique is limited and does not allow for detailed analysis of internal connections.One final note about endoscopes is that they are a highly versatile piece of inspection equipment. Endoscopes can be used to inspect BGA solder joints as well as various surface-mount and through-hole mount assemblies that can be difficult to analyze through normal methods.

Contact Us

E-mail: [email protected]

E-mail: [email protected]

Skype: [email protected]

Whatsapp: +86 15012972502

Add: 2F, BUILDING H, WANDA INDUSTRIAL ZONE, ZHOUSHI ROAD, LANGXIN COMMUNITY,SHIYAN STREET, BAO 'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA

Link